Mining Feature Revisions in
Highly-Configurable Software Systems

Gabriela Karoline Michelon?, David Obermann'!, Wesley Klewerton Guez Assuncio®,
Lukas Linsbauer?, Paul Griinbacher!, Alexander Egyed!
!Institute for Software Systems Engineering, Johannes Kepler University Linz, Austria
2LIT Secure and Correct Systems Lab, Johannes Kepler University Linz, Austria
3COTSI, Federal University of Technology - Paran4, PPGComp, Western Paran4 State University, Brazil
*Institute of Software Engineering and Automotive Informatics, Technische Universitit Braunschweig, Germany

ABSTRACT

Highly-Configurable Software Systems (HCSSs) support the sys-
tematic evolution of systems in space, i.e., the inclusion of new
features, which then allow users to configure software products ac-
cording to their needs. However, HCSSs also change over time, e.g.,
when adapting existing features to new hardware or platforms. In
practice, HCSSs are thus developed using both version control sys-
tems (VCSs) and preprocessor directives (#ifdefs). However, the
use of a preprocessor as variability mechanism has been criticized
regarding the separation of concerns and code obfuscation, which
complicates the analysis of HCSS evolution in VCSs. For instance,
a single commit may contain changes of totally unrelated features,
which may be scattered over many variation points (#1ifdef's), thus
making the evolution history hard to understand. This complexity
often leads to error-prone changes and high costs for maintenance
and evolution. In this paper, we propose an automated approach
to mine HCSS features taking into account evolution in space and
time. Our approach uses constraint satisfaction problem solving to
mine newly introduced, removed and changed features. It finds a
configuration containing the feature revisions which are needed
to activate a specific program location. Furthermore, it increments
the revision number of each changed feature. Thus, our approach
enables to analyze when and which features often change over
time, as well as their interactions, for every single commit of a
HCSS. Our approach can contribute to future research on under-
standing the characteristics of HCSS and supporting developers
during maintenance and evolution tasks.

CCS CONCEPTS

« Software and its engineering — Preprocessors; Software
product lines; Traceability; Reusability.

KEYWORDS

system evolution, software product lines, preprocessors, feature
evolution, version control systems, repository mining

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SPLC "20 Companion, October 19-23, 2020, MONTREAL, QC, Canada

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7570-2/20/10...$15.00
https://doi.org/10.1145/3382026.3425776

ACM Reference Format:

Gabriela Karoline Michelon?, David Obermann?, Wesley Klewerton Guez
Assungio®, Lukas Linsbauer?, Paul Griinbacher!, Alexander Egyed!. 2020.
Mining Feature Revisions in Highly-Configurable Software Systems. In 24th
ACM International Systems and Software Product Line Conference Companion
(SPLC 20 Companion), October 19-23, 2020, MONTREAL, QC, Canada. ACM,
New York, NY, USA, 5 pages. https://doi.org/10.1145/3382026.3425776

1 INTRODUCTION

A software system usually must be delivered with different config-
urations of features, with each feature representing a functionality
of the system accessible to developers and users. To remain com-
petitive, companies have to satisfy different customer needs of
the market segment they serve. Software Product Line (SPL) engi-
neering is a systematic approach to deal with the development of
customized system products. An SPL is a set of software-intensive
systems that share a common set of artifacts developed in a pre-
scribed way to facilitate their systematic reuse [7]. The customized
software products, a.k.a. variants, result from the derivation of SPL
artifacts, i.e., the selection of a different set of features that are of
interest to a customer. To allow customization, the features of an
SPL is implemented using variability mechanisms [1].

A widely used variability mechanism in SPLs is based on an-
notations [26]. Annotations rely on preprocessor directives such
as #ifdef and #endif which enclose blocks of variable code and
enable to tailor system variants to different hardware platforms, op-
erating systems, and application scenarios [23]. Annotation-based
SPLs are often implemented as Highly-Configurable Software Sys-
tems (HCSSs) [16]. HCSSs use techniques such as feature flags,
feature toggles, or feature switches, to turn on configuration option-
s/features needed to be included in a product [8, 18, 27]. However,
features also need to evolve over time. For instance, when a specific
feature is adapted to a new hardware platform, then a new version
of a variant is created. This evolution in time [30] is aided by some
tools such as version control systems (VCSs) [28].

However, despite the benefits of managing HCSSs in VCSs,
they are hardly integrated to support both evolution in space and
time [21, 22]. For example, when evolving HCSSs in VCSs, develop-
ers often commit unrelated or loosely related implementations of
features [13]. Then, evolving a particular feature requires to find
the implementation artifacts over many #ifdefs, compromising
code comprehension and complicating maintenance and evolution
tasks [9].



SPLC *20 Companion, October 19-23, 2020, MONTREAL, QC, Canada

In this paper, we present an automated approach! for mining
HCSSs managed in VCSs to obtain information of the evolution
of features in both space and time. For every repository commit,
we mine the features that were introduced, changed, and removed.
Thus, our approach enables to automatically retrieve the features
that evolved in each point in time for every change in the code.
The approach takes into account all subsequent lines of code and
solves a Constraint Satisfaction Problem (CSP) [5, 29] to assign
feature revisions to a specific changed block of code. In addition,
our approach finds a configuration for every changed block of
code in a Git commit that activates that specific program location,
thereby easing the analysis of feature interactions [2].

2 MOTIVATING EXAMPLES

The complexity of HCSSs implementation often makes mainte-
nance, evolution, and testing activities time consuming and error-
prone tasks. This happens mainly because source code cluttered
with preprocessor directives is difficult to understand [14]. Complex
systems have many features which are annotated across many files,
and which often depend on or interact with other features. This
makes it hard, for instance, to determine without an automated
mechanism which specific feature has a bug or causes other faults.

Imagine an HCSS managed in a VCS, which has been evolved
for a while. If a bug is reported by the users, the developers need to
find where and when the bug was introduced and which features
it affects. Developers fixing the bug may need to look through
the entire VCS version history to find the commit introducing the
defective code. However, manually retrieving the changes related
to the desired feature is a complex task, especially when multiple
features are changed or added in a single commit [4, 17, 31].

Concrete examples can be found in the commits of the Lib-
SSH? system. Analyzing the version history we can see that many
changes were made in a single commit (77603db), containing
changes of refactoring, cleanup debugging messages, inclusion
and enhancing of features, and bug fixing. In this same commit, 15
files were changed, representing a total of 415 additions and 338
deletions. To associate the different changes to specific features,
firstly, we have to analyze which features really changed. Perform-
ing a manual analysis over all the files requires also to analyze each
#ifdef block as well as #defines and #includes directives in the
code to correctly assign a change to a feature. Doing this manually
can become infeasible and a cumbersome when features have high
degrees of scattering, tangling, and nesting [26].

It has been shown that the commit messages often do not reflect
the actual changes performed [4]. For instance, the commit 647401
of the LibSSH system contains the code implementing the feature
HAVE_SSH1 but also changed the feature name in the #ifdef an-
notation to WITH_SSH1. This kind of changes can easily lead to a
misunderstanding of features. For example, if a customer using a
system version delivered before this name change reports a bug,
and the developers try to find the bug by looking for the feature
HAVE_SSH1 in a version of the system with the aforementioned com-
mit, they will be misled, since, at that time, the problem is actually
located in the feature WITH_SSH1.

!https://github.com/GabrielaMichelon/git-ecco
2https://gitlab.com/libssh/libssh-mirror/

Michelon et al.

Commits of a specific
release in a tree structure

2 Get commits
Clone Git of the trunk
repository branch of a
specific release

Set of feature Set of features
revisions

Figure 1: Approach overview.

Compute
feature
revisions

Identify
features

The examples show that recovering feature implementations is
a complex and costly task in HCSSs evolution, which suggests an
automated mechanism to retrieve the added and removed features
as well as their changes, i.e., revisions.

3 APPROACH

We present an approach for mining feature revisions of HCSSs,
which are managed in VCSs. We describe its main steps, input, and
output, as well as the internal representation of artifacts. From
now on, we refer to feature revision as the change in a feature at
a specific point in time, i.e., in a Git commit. Figure 1 presents an
overview of our automated approach. Firstly, the Git repository of
the HCSS is cloned (step 1) and all commits of the main branch of
a specific release, i.e., a Git tag, are retrieved and represented in
a tree-like structure (step 2). Since the goal of our approach is to
mine feature revisions, we must know the HCSS features. If they
are known in advance, they are provided as input for step 4, if
not, step 3 is responsible for automatically identifying the features
implemented in the HCSS by exploring the tree structure containing
the files and source code of each commit of the release. In step 4,
our approach performs the process of assigning feature revisions
to the changes.

Below, we describe in detail how the tree-like representation of
the artifacts is created and we explain the steps of identifying fea-
tures (step 3) and computing feature revisions (step 4). To exemplify
these activities, we use the running example presented in Listing 1.

Artifact representation. Existing tools such as TypeChef [20],
SuperC [10], and KernelHaven [19] allow transforming systems that
are implemented in C and annotated with preprocessor directives
into an Abstract Syntax Tree (AST). In addition, TypeChef and
SuperC represent the variability in the AST in the form of choice
nodes. However, for our purpose, we only need nodes at the level
of preprocessor directives and it would be computationally too
expensive and time-consuming to analyze all commits of a system
at the AST level. Thus, we decided to create our own tree structure
suitable for our approach, which only needs to distinguish the
preprocessor directives to easily build constraints for CSP problems
and to identify the features of our subject systems, which do not
have a variability model and tristate type such as the Linux Kernel.

Therefore, in our approach, the artifacts, i.e., the source code
and any other files, are represented based on a tree-like structure.
For this, we assume that conditional blocks wrap code that may
belong to one feature, multiple features, or no feature. An example
of such code blocks is presented in Listing 1. The Lines 1-4 are part



